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Abstract

An aircraft that is described by a non-lin-
ear, time-varying system is transferred
from an initial state to a final scate in a
certain number of steps which resule from
the discretization of the entire (time-,
fuel- or energy-optimized) trajectory in a
sequence of points defining elementary tra-
jectories.

The aircraft is guided from one point to
another by a finite~time control vector ob-
tained for linear systems with a quadratic
performance criterion. The control time in-
terval is chosen such that the set of ac-
cessible states of the aircraft. almost al-
ways lies in the set that may be obtained
by freezing the linearization in the ini-
tial point of the elementary trajectory.

At the end of the control interval the
state is measured and then allows the de-
termination of the control vector, provided
that the difference between the aircraft's
state and the predetermined state lies in-
side a tolerable error window. If this con-
dition is not met a parameter identifica-
tion is carried out.

An application is made to the in-plane, ac=-
celerated climb of a hypothetical superso-~
nic aircraft.

I. Introduction

One of the major problems of the flight of
an SST is the accelerated c¢limb through the
supersonic Mach number range. For such an
aircraft flying at high altitude and there-
fore exhibiting relatively large time con-
stants it may be interesting to investigate
the performance of a predictive control
system. This will not be done by reducing
repetitively the terminal target set of the
time-to-go trajectory (by a human pilot)l),
but rather by guiding the aircraft automa-
tically along some nominal trajectory in a
certain number of steps.

In this case optimal control methods with
finite-time control duration play an impor-
tant rdle in anticipating the trajectory
for some specified future state of the ve-
hicle: the predicted vehicle control vector
is then determined by a fast-time model. For
reasons of simplicity and computation time
saving optimal control methods for linear
systems are used which minimize a quadratic
cost functional., The optimal steering func-
tion for the model is converted to real
time for steering of the actual vehicle.
This can be done by using some control law
satisfying Erzberg's perfect model follow-
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ing conditions?) or, for low noise vehicle
environment and state measurement situa-
tions, by feeding back the vehicle state
only at certain time intervals, i.e., by
controlling the vehicle by means of the mo-
del control vector in the open-loop manner,
provided that certain requirements for the
cost functional are satisfied in order to
reduce the divergence between the actual
trajectory and the predicted one to a mini-
mum. This error-tolerant control system
also benefits from the trajectory diver-
gence by using it for parameter adjustment
with little computation load.

The guidance and stabilization system con-
sists of an off-line determination of a
minimal trajectory used as a stored flight
plan and of the on~line fast-time control
vector computation and parameter identifi-
cation, which may be performed by an on-
board computer (fig. 1).

II. Problem Formulation

Let the dynamics of the vehicle be descri-
bed by a non-linear, time- and parameter-
varying, twice differentiable, first order
differential equation system:

x(t)=f(x,u,a,t), x(ty)=xg, (1)

y(£)=C x(t) . u(to)=ﬁo
té[to,tt],(tf>t0)

where x is the n-dimensional state vector,
u an r-dimensional control vector, y an
mq-dimensional observation vector (mi<n)
and a a p~dimensional parameter vector. If
the vehicle dynamics is developed into a
Taylor's series about the nominal trajec-
tory

(x,u,‘c)no

(2)
then the linear part represents the model
dynamics of the vehicle
6x('c)=Ak 6x(t)+Bk 6u(t)+Dk Aa
8y (t)=C, §x(t)

(3)

frozen at some point (x,t)y, which lies a-
long the nominal trajectory (2) that ex-
tends between the two extremal points
(x,t)g and (x,t)y from and to which the
vehicle has to be transferred. 8x, S6u and
8§y are the perturbations of the previously
defined vectors, Aa accounts for some con-
stant parameter variation and A, B, Cp and
D are matrices with appropriate dimensions.
The problem is now to steer the vehicle
with the control law



u(t)=ﬁk+6u(t) Ch)

from (x,u,t),, to a neighborhood close to

(x,u,t)nok+1 WIth lR/UO<<(tk+1‘tk)<<(tf-to)

(1g/Uy)being the time needed to cover one
reference lenght 1R of the vehicle at the
speed Uy) provided 6u(t) minimizes the
quadratic performance criterion (prime de-
notes transpose)

Jk—mln[ka+1Fk6xk+1
(5)
k+1
+A[ (8x' (£)Q 8x(t)+8u' (t)RSu(t))dt]
t
k

where F, Q and R are weighting matrices so
as to maintain satisfactory trajectory and
flying qualities,

III, Control Strategy

A. The nominal trajectory
The finite set ypo of the connectable
points (y,u,t)nok, ynok(m1X1)’ m,<n,

Unok(P1X1): ry<r, k=1, N, resulting from

the discretization of the minimal trajec-
tory profile (2) is obtained for a simpli-
fied non-linear model of the vehicle (con-
sidered, e.g., as a mass-point system)
where upo is the steering vector determi-
ning the speed at which the entire flight-
path has to be covered.

This two-boundary value problem is solved
off-line by some method (here Balakrish-
nan's epsilon technique) such that the’
nominal trajectory is either time-, fuel-
or energy-optimized.

B. The elementary trajectory

The conditions for possible and best open-
loop vehicle-model following during the
k-th elementary trajectory can be stated
as follows:

1) for some useful control domain the fu-
ture accessible state domain of the model
issyeing from the measured vehicle state
(X,t)x must almost always lie in that of
the vehicle. This condition implies small
initial (vehicle) state measurement and
model parameter errors.

From the point (X t)k and for all times in
the k~th control period 2a) the autonomous
model and 2b) the free vehicle must be
stable.

When allowing a certain maximum distortion
value between the vehicle and model acces~
sible state domains as defined with con-
dition 1), the time needed to reach this
dlstortlon glves the maxlmum predicted con-
trol duration tmaxk+1‘tk for the elemen-

tary trajectory initiated at tk. This is

a measure for the validity of the model
freezing assumption. So far it is evident
that control law (4) enables the vehicle

to be transferred from (%,t)y to the vicin-
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ity of the predicted state (X,t)y41.

3) the divergence of the vehicle and model
trajectories reduces to a minimum during
the specified control interval if

J (8u(t))=min[min J] (6)
(Q:F)k3R Su(t)

The vehicle thus remains in its "linear
tube" when the weighting matrices of the
cost functional (5) are such that min Jy
reaches a minimum value for some fixed or
reference coefficients of the matrix R as
an example.

The future end point of the nominal trajec-
tory (y,t)n0k+1 ist now taken as the point

next to tmaxk+1 and the corresponding ve-

hicle state Xy 44 is obtained according to
the relation (t denotes pseudo-inverse)

(7)

o*Cs §]k+1

where yk+1 is the predicted steady state
vehicle vector corresponding to yn°k+1, 80

that the k-th initial conditions for the
model .dynamies (3), with dropped sensiti-
vity matrices, are

6x(€k)=ik-ik+1 (8)

’A‘k+1=[C

Two types of finite-time control vectors
are considered for this regulator problem.

1. a continuous unbounded control vector
with free terminal state

su, (t)=-[R'B'K(t)], 8x(t) (9)
where Ky(t) is the solution of the Riccati
matrix equation

K, (t)=[-K(t)A-A'K(t)+K(t)BR'B'K(t)-Q]

(10)

integrated backward from Kk(€k+1)=Fk to
t=ty.

2. a piece-wise continuous control vector
which is obtained by the so-called dirﬁgt
convex feedback optimal control method
and is a linear function of the initial
conditions when the controls are not con-
strained,

Suy (£)==[V(t)E], 6x(E,) (11)

where the matrix
Vk(t)=[diag v, (t), diag v2(t), vees
diag vN(t)]k, (r x(Nxr))

has the property

k+1
[V(t)V'(t)]kdt=[TkI], (r xr)

h*jﬁ,

cte

k
and tk=Tk/N, i.e., the control interval
Tk=tk+1-tk is divided (in this case) into



N equal subintervals of lenght 1y, and Gy
is a constant ((N x r)x n) matrix (see Ap-
pendix I).

C. The entire trajectory

The terminal point Xk4+q1 of the k-th elemen-
tary trajectory is not an equilibrium state
for the vehicle along the nominal trajecto-
ry. Thus a fixed end state for the control
vector computation is not required. Fur-
thermore, in order to avoid too large con-
trol actions and therefore large accele-
ration peaks at the connection of two tra-
jectories, the finite-time control vector
(which ensures attainability of the inter-
mediate final state at the specified con-
trol time) is prematurely interrupted at
some time ty,q<ty,q at which the next con-

trol vector uks+1(t) is applied after a new
initialization of the control system at
tr+1=tk+1-Aty+1 (Aty4q is the computation
time of uy,q(t), see figure 2).

The entire control maneuver is then real-
ized by the succession of control vectors
with incomplete duration provided the ve-

hicle-model errors remain in a tolerable
error window.

IV, Parameter Adjustment Method

It is now assumed that the system defini-
tion parameters a (which are intimately re-
lated to each other to give the elements of
the state and control matrices, the latter
being known with some accuracy at ty) vary
slowly during Ty and remain in a bounded
parameter set Ap during the entire obser-
vation period tg-ty. If for t<[ty,tys+1] the
vehicle model error becomes larger than the
tolerable error, then a new control vector
has to be computed at tyg,1 (<tysq) with
certain corrected parameter values. Obvi-
ously, the time required to perform the pa-
rameter adjustment must not exceed too much
the control vector computation time. There-
fore, a fast adaptation method must be
found, based on the solution continuity of
ordinary differential equations with regard
to parameters and utilizing only a small
number of parameters in the case of a mul-
tivariable system.

As shown in Appendix II, the p definition
parameters can be reduced to py classes of
parameters, the variation of any one of the
parameters of the same class leading the
system state to the same sector. Stating it
another way, the variation gives the same
sign combination of the state values defi-
ning the kinematical relation for the tra-
jectory divergence. Inversely, a certain
trajectory divergence can be corrected by
changing only one, i.e., the representative
parameter of that class. Further, when se-
veral of the parameters belonging to at
least two of the py classes are varied from
their nominal values, then a qualitative
identification test yields the dominant
error parameter aq. Next, the value of the
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dominant error parameter Aag responsible
for the vehicle-model state error ex at
trs+1 is given by the solution of the system
resulting from the difference between model
differential systems with and without sen-
sitivity terms, where both models are dri-
ven by the same last control vector Suy(t):
the trajectory divergence is thus compensa-
ted by a constant parametric deviation

Aayp 41 by means of the last existing model
values.

Since some of the system definition parame-
ters are identified rather than the system
matrix elements, it is of course possible
to adjust the vehicle to the model parame-

ters and to keep them in a certain domain

or to let them obey a specified law (e.g.,
the static stability margin) as in the CCV-
concept.

The error vector being the difference of
the vehicle and model state vectors, it is
obvious that linearization and freezing
operations add to parameter variation ef-
fects, so that the true dominant error pa-
rameter may not always be identified. But
the adjusted one always corrects the tra-
jectory divergence completely, provided
conditions III 1) to III 3) hold for the
next control period.

V. Application and Results

The theory is applied to the accelerated
climb of an SST~type aircraft. The state
and control vectors of the in-plane rigid-
body aircraft dynamics are respectively:

x'=(u,w,q,0,2), (12)

u,w: body-axis speed vector
6: pitch angle
q: pitch velocity
Z: altitude

u'=(6t,62),

8¢: throttle command position
§,: elevator angle

n=5

r=2

For the supersonic high altitude flight the
atmosphere density gradient is taken into
accountd) so that the pair (A,B) of the mo-
del and control matrices is controllable.
Moreover, allowing a certain dynamic pres-
sure error between vehicle and model, the
limiting distortion condition becomes (see
III B) for a negligeable altitude differ-
ence

280y 4/l e,  0<e<l (13)
and the k~th predicted maximum control du-
ration is given by (using aq1 and b2 of

the matrices A and By):

a AG
I [-S%—*-l—n) (14)
k 12 t
k
where AQ =u -4
k+1 nok+1 k
AGt =6tno —Ktk

k+1



and Unoy 41 is that speed value in the nomi~

nal trajectory point set which lies closest
to ix41, as determined by relation (13).

The choice of the weighting matrices of the
quadratic functional (5) determines

- the vehicle-model following performances
as stated by condition (6),

- the non-violation of the control domain
(maximum throttle command) when the control
vector is not constrained.

A suitable choice for the guidance task of
carrying out the transfer from the initial
to the final point of the elementary tra-
jectory is found to be F=diag F=0 with only
f1,f5#0,>0, which are the co-factors of the
speed and altitude increases, respectively.
The shape of the trajectory depends on the
stabilization, i.e., on the vehicle beha~-
vior about its center of mass. Q=0 is cho-
sen with an n-2(=3) significant element po-
sitive-definite (Qu.»>0) core, the elements
being the co-factors of the state values
defining the short period motion:

Q=diag [O 24y :QB >4y 30:] .

Although the rdle of the state weighting
matrix Q is to minimize the effects of the
non-linear and particularly the second or-
der terms of the series development of the
vehicle equations of motion (1), Q is not
taken to be the Hessian matrix of the sys-
tem.

The control weighting matrix is set equal
to the unit matrix, R=I, and has to prevent
excessive amplitudes of the control maneu-
vers as well as the violation of the throt-
tle command limit 6tmax=1'

For any speed and altitude increases, it is
found that only Q has to be adapted, F re-
maining constant over the entire flight
path. So Q can be computed off-line togeth-
er with and according to the nominal tra-
jectory, so that only little changes are
needed due to parametric errors between ve-
hicle and model. Furthermore, the weighting
matrices are the same for both optimal con-
trol methods.

Figure 3a shows three elementary trajecto-
ries for the continuous control vector
case, starting from the level flight condi-
tions at the altitude of 12 km and at the
three Mach numbers M=1.2, 1.6, 2. in the
plane (8M, 3Z) for &My = -.12,

825 = =50 m. Figure 3b shows the correspon-
ding control vectors (8¢, §,) for the con-
trol duration of 17.9 s for which a small
trajectory divergence is obtained although
about 20% dynamic pressure difference bet-
ween initial model and final vehicle values
are tolerated.

Elementary trajectories initiated at the
level flight conditions My = 1.2 and Z, =
12 km obtained for a stepwise-continuous
control vector with 5 subintervals for dif-
ferent final altitudes ranging from 6Z, = 0
to -150 m and for the same Mach number in-
crease as in the previous case are shown in
figure 4a. With a duration of 17.9 s compu-
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ted without prescribed final altitude, it
appears according to figure 4b that for
520 = =150 m the first control subinterval

lies on the throttle command limit. Straight
lines joining the same control vector sub-
intervals for the different terminal alti-
tudes show the proportionality with the
initial conditions when the control vector
is free.

Figure 5a shows an entire time-optimized
trajectory starting and ending at the level
flight conditions for the initial Mach num-
ber Mg = 1.2 and altitude Zp = 12 km and
for the final Mach number My = 2. and alti-
tude Z¢ = 18 km. The only information the
control system gets from the nominal tra-
jectory point set, is speed, altitude and
flight-path angle values. For an effective
total flight duration of 233 seconds (com-
pared to the 224.5 seconds of the pre-de-
termined trajectory duration, the differ-
ence is due to the fact that the aircraft
lags during the last acceleration phase to-
wards Mach number 2), the vehicle state is
measured 14 times only. The control time
interval for each elementary trajectory is
interrupted 5 seconds before completion and
the fast-time system computation is set to
1 second. In this case, for which perfect
knowledge of the vehicle parameters is as-
sumed, the speed and altitude vehicle-model
errors are kept within #10 m/s and 40 m,
respectively (figure 5b).

In that particular case of a 5th order cha-
racteristic equation, three classes of pa-
rameters are found (according to the kine-
matic condition 8Z) to which the qualita-
tive test vector €4 is related in the fol-
lowing manner:

€a4=1: static stability margin variation
Ax/x dominates

€a,=1: mass stability margin variation
Am/m dominates

1ift coefficient margin variation

Ea3=1: 1
Acy/c, dominates

and the logical €, yields (see Appendix IT)

[ 1 1 1
€ = 1/3 | -1 1 1| sgn ey (15)
a -1 -1 1 1

where (sgn eyl)' = (sgn ew, sgn eq, sgn ez)

denotes the sign vector of the angle of at-
tack, pitch velocity and altitude errors,
respectively. Furthermore, €4, accounts for
trim value errors, €5, for air density
changes and dynamic pressure measurement
inaccuracies, €5, for vertical wind shear
as well as for aérodynamic distortion. For
the nominal case My = 1.2, Zy = 12 km, the
relative sensitivity ratio is

-Ax/x:-Mm/m:be, /e, = 1:.35:4.10"%,

Figure 6 illustrates the dominant error pa-
rameter space. The triangle is the visible
part of the iso-error plane (8y=68z=6 m),
which represents the altitude divergence



(after 20 s) for t>0, and which also indi-
cates the zones of the parameter dominances.
Finally the identification process is de-
monstrated for two examples where identifi-
cation occured one second before the end of
the first elementary trajectory due to an
initial mass error (Am/m = .008: vehicle
heavier than the model, figure 7a) and a
static margin error (4x/x = -.001, figure
7b). The corrective identification effect
becomes evident on the next elementary tra-
jectory.

VI. Concluding Remarks

Concerning the system performances it can
be said that 1) elementary trajectory er-
rors are not additive in the case of the
entire trajectory, i.e., that the final
state errors do not propagate from one ele-
mentary trajectory to the next one, 2) con-
trol vector dilation inaccuracies (when
playing it back in real time) do not induce
trajectory divergence but only a difference
between effective and predicted elementary
final states.

If strong perturbations or too abrupt para-
meter changes occur, the actual control
task can be accomplished with reduced con-
trol intervals in order to smooth the tra-
jectory divergence. If the latter can not
be kept in the interior of the error win-
dow, the predicted control vector has to be
played back in closed-loop form or the con-
trol interval has to be shortened again un-
til the actual control system degenerates
into a dual one, for which it may not be
possible to separate control and estimation.
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Appendix I:
Convex Feedback Optimal Control Method

The theory is best explained with the aid
of the linear time-varying system

x(t) = A(t) x(t) + B(t) u(t),
x(to) = Xgs t € [tg, to+T]
x(n x 1) u(r x 1)

which has to be transferred to

x(to+T) = 0 free (for the purpose of the
present study)
by means of the piece-wise continuous con-
trol vector of the form
u(t) = -V(£)G x4

if u(t) is not bounded, so that the cost
functional (5) (with adequate notation) is
minimized.

Let all uj(t), 1 = 1, r, be decomposed si-
multaneously into N constant subintervals

uij(t), j = 1, N of equal lenghts
(Nt = T).
The unit-pulse functions vj

1 for tj-l €t < tj

T = T,

v.(t) =
J 0 otherwise

are orthogonal over t € [t,, to+T], i.e.,
0 for k # ]

1) v (t) v.(¢)
k. J vj(t) for k = §

totT 0 for k # j
2) kam vi(t)at =
T for k = §
to
so that
N
u(t) = 2 vy u; or u(t) = V(£)U
e Jd J
Jj=1
where
V(t) = [vl(t)Ir, Vo (8T, e, vN(t)Ir]
Ut o= [U,, Ugy vvey Uyl s{r x rN)
1 e g 2(1 x rN)
If u(t) = V(t)U is introduced into the so-
lution of the differential system, then
X(t) = X (¢, t)x, + X(t, £)U
where
X (t,to)=¢(t,to)=eA(t—t°) ,(n x n)
° ,{(n x rN)

t_+T
o]

X(t,8,) = f@(t,t') B(t') V(t')dt'
to

these two matrices are continuous over
t & [to, to+T].

The cost functional becomes

Ju(t)) = x! J(0)x, + 2U'Bx  + U'CU.

o}



1) J(u(t)) is quadratic in U.

2) B and C do not depend on the initial
conditions Xge

3) In the actual case F, Q > 0 and R > 0O
(R can be identically zero, provided that
one of the matrices F or Q does not vanish
entirely), the symmetrical matrix C

(rN x rN) is non-singular,

therefore J = 2(CU + Bx ) =
and u(t) = ~V(t) G X,
where G = C!' B , (rN x n),
The expressions for 8 and C are
t +T
B=X"(t +T,t )FX (6,+T,t )+f X' (t,t, )
s
Q(t)Xo(t,to)dt ,(rN x n)
C=J(F)+J(Q)+J(R), with
J(F)=X"(t +T,t IFX(t +T,t )
to+T
J(Q)=] X'(t,t )Q(E)X(t,t )at
t (rN x rN),
tO+T symmetric
o
J(R)=j VI (6)R(E)V(E)At
t J

For a bounded control vector of the type

jue)| , |U]l €M
if, after computation of U it is found that
|UJ|>Mi,i=1,I‘,j=1,N
the computation is performed again with
Ui, 7t
until all
lui,jl <M.
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Appendix II:
Qualitative Identification Test and
" Adjusted Dominant Parameter Value

Consider the following linear stationary
differential system

X (t)=ASx(t)+D Aa, 8x(t,)=0, t&[t,,t, ]

Sy (t)=Céx(t) , 6x(n x 1)
s, da(p x 1), constant, not
identically
zero

s 6y scalar

then

1) there exist pp, Py < p, classes of para-
meter Aa € A, leading 6x(t) to one amongst
2n=1 of its g“ distinet sectors when
8y(tq)=const, > 0, tg < tq € byuq

2) pr 2%1-1 is given by the sgn combina-
tions of the nq states satisfying

Gy(tl) = C A 6x(t1)_> 0

i.e., the number of the non-zero elements
of the row of A corresponding to Gy(tl)

3) when simultaneously several of the p
parameters Aa, belonging to at least two of
the pp classes are different from zero,
then sgn 8x(t) is given by the dominant
parameter ag. When applied to the actual
problem, the dominant error parameter is
given by the following qualitative identi-
fication test

€,=1/1 H sgn {C, ex,}, e, (p, x 1)

H (p, x 1)

¢; (1 xn),
1=ny+i<n,

1<pr.

3

The elements of €y are logical; H is the
transition matrix of the parametric errors.

Then the state error ex(ty+q) is compensa-
ted with saq, ,,=const by means of the dif-

ferential system formed with the_difference
of the model dynamics frozen at tg (3) with
and without sensitivity terms and driven by
the same last control vector Suy(t), i.e.,

U1
bag, 47 =8y (t )[cf o(t,t")Dp €, at']

2%

-1
’

where

o(t, tk), (n x n), is the fundamental matrix
of the stationary system for t € [tk,fx+1]-

Dp, (n x pp), is the sensitivity matrix re-
duced to the number of the pr representa-
tive parameters,

Gy(Ek)=~C ex, .

(A,B)k+q1 and §k+1 (eq. 7) are then computed
using the new adjusted value

adk+1 = agy + Aadk+1.
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(8o = +95 Mo '_1'2’ Zo = 12 km; Mg = 2, at the end of each step
Z¢ = 18 km; final vehicle state after 14 for the entire time-

steps: M = 2.011, Z = 18,074 km; continuous optimized trajectory

control vector)
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Examples of trajectories with parameter adjustment occuring at the end of the first step
due to initial mass error (fig. 7a) and static margin error (fig. Tb) for Z, = 12 km,
Mo = 1.2 and tho = .9
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